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Abstract 

Breast cancer, a life-threatening disease affecting millions worldwide, poses significant challenges due to its 

time-consuming manual determination process, potential risks, and human errors. It is a condition where cells 

of the breast develop unnaturally and uncontrollably, resulting in a mass called a tumor. If lumps in the breast 

are not addressed, they can spread to other regions of the body, including the bones, liver, and lungs. 

Early diagnosis is crucial for effective treatment and improved patient outcomes. In this research paper, we 

focus on employing machine learning models to achieve quick identification of breast cancer tumors as benign 

or malignant. The primary objective is to develop a decision-making visualization pattern using swarm plots and 

heat maps. To accomplish this, we utilized the Light GBM (Gradient Boosting Machine) algorithm and compared 

its performance against other established machine learning models, namely Logistic Regression, Gradient 

Boosting Algorithm, Random Forest Algorithm, and XG Boost Algorithm. Ultimately, our study demonstrates 

that the Light GBM Algorithm exhibits the highest accuracy of 96.98% in distinguishing between benign and 

malignant breast tumors. 
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1. Introduction 

Today, Breast cancer is affecting individuals, particularly women. According to the World Health Organization 

(WHO). It's a leading cause of female mortality. Around a million women succumb to breast cancer annually 

(Simon et al., 2021) with India's fatality rate at 13.92%. The prevalence is higher in Australia, Europe and the US, 

while Malaysia observes later-stage presentations (Vyas et al., 2022). Regular screening is vital due to 

asymptomatic cases. Early detection aids treatment and survival. Contributing factors include family history, 

obesity, radiation exposure, and genetics.  

Recently discovered, breast cancer is categorized as malignant or benign. Analyzing tumor characteristics 

helps differentiate them. Benign tumors are low-risk, while malignant ones spread to neighboring tissues and 
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the body. Artificial Intelligence (AI) is being employed to classify breast cancer. AI algorithms train on datasets to 

label tumors as 1 for benign or 0 for malignant (Bardou et al., 2018).  

The primary objective of this research is to establish a method for early tumor diagnosis, since the 

conventional diagnostic approach can yield false positives, leading to unnecessary procedures. 

1.1 Problem Definition 

Currently, India reports approximately 178,000 cases of breast cancer. However, manually determining cancer 

in these cases is an arduous and time-consuming process, often leading to delays and the possibility of human 

errors. To address this issue, we aim to develop a predictive model that can efficiently classify breast tumors as 

either malignant or benign using Machine Learning techniques. Our approach involves analyzing the correlation 

between various features, eliminating redundant data, and ultimately creating a highly accurate model. By 

leveraging these advanced technologies, we strive to enhance the early detection and diagnosis of breast 

cancer, which can significantly improve patient outcomes. 

1.2 Objectives 

The initial aim of this study is to examine breast cancer data derived from a diagnostic dataset comprising 30 

feature columns and approximately 570 rows. The primary goal is to identify common characteristics in these 

groups that distinguish benign cases from malignant ones effectively. Subsequently, we plan to generate a 

heatmap visualization to identify and eliminate redundant features from the dataset. Finally, our ultimate 

objective is to create a machine learning model that enables users to classify breast cancer cases as either 

benign or malignant accurately. By accomplishing these objectives, we hope to enhance the diagnostic process 

and contribute to more efficient and precise breast cancer classification. 

1.3 Scope 

Our project aims to address challenges and propose solutions to enhance accuracy in breast cancer 

classification. Accuracy is a critical factor, as an imprecise model can lead to suboptimal outcomes. The research 

primarily centers around improving the accuracy of various algorithms, namely Logistic Regression, Gradient 

Boosting Algorithm, Random Forest Algorithm (Octaviani and Rustam, 2019), XG Boost Algorithm, and Light GBM 

Algorithm. The objective is to achieve the highest possible accuracy for the model by fine-tuning and optimizing 

these algorithms. By tackling accuracy-related issues, we aspire to provide more reliable and effective breast 

cancer classification results. 

2. Machine Learning Algorithms Used For Breast Cancer Prediction 

2.1 Filter Method 

The filter method is a prominent approach for feature selection. Filter methods determine feature relevance 

by employing statistical metrics prior to model training. This process streamlines feature selection, enhancing 

the efficiency of the machine learning pipeline. It involves steps like computing scores for each feature based on 

metrics capturing their relationship with the target variable, ranking features according to these scores, and 

setting a threshold to retain or discard features. Notably, filter methods assess feature relevance independently, 

making them computationally efficient and suitable for large datasets. These methods are model-agnostic, 

allowing their application across diverse problems and data types. Common scoring metrics include correlation 

coefficients, mutual information, and variance thresholding (Asri et al., 2016). 
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2.2 Wrapper Method 

The wrapper method stands as an advanced and dynamic technique for feature selection within the realm of 

machine learning. Unlike filter methods that employ statistical measures, the wrapper method takes a more 

comprehensive approach by iteratively training and evaluating machine learning models using various feature 

subsets. This technique involves generating subsets, training models, and evaluating performance for each 

subset, guided by a chosen performance metric. The subset yielding the best model performance is then 

selected. Unlike filter methods, the wrapper method considers feature interactions, enabling it to capture 

complex relationships in the data. Its model-centric approach aligns with the ultimate goal of achieving superior 

predictive accuracy. However, it does come with computational costs due to its repeated model training and 

evaluation, and careful handling is required to avoid overfitting. The wrapper method's ability to fine-tune 

feature selection for optimal model performance makes it a valuable asset in situations where precision is 

paramount (Asri et al., 2016). 

2.3 Embedded Method 

The embedded method represents a dynamic and sophisticated approach to feature selection in the realm of 

machine learning. Unlike filter methods that analyze features prior to model training or wrapper methods that 

evaluate features independently, the embedded method seamlessly integrates feature selection within the 

model building process. This method takes advantage of algorithms that inherently assess feature importance 

while learning from the data. As the model iteratively refines its parameters, it simultaneously adjusts the 

relevance of features, automatically assigning higher importance to those that significantly contribute to its 

performance. Algorithms like Lasso Regression, Decision Trees, Random Forests, Gradient Boosting, and certain 

Neural Networks exemplify embedded methods by either penalizing irrelevant features or calculating feature 

importance scores. This approach leads to efficient feature selection, insights into feature impact, and often 

prevents overfitting by penalizing unnecessary attributes. However, it's crucial to note that the applicability of 

embedded methods is tied to the specific algorithm chosen and its inherent feature selection capabilities. In 

essence, embedded methods strike a balance between filter methods' efficiency and wrapper methods' 

performance optimization, yielding both accurate and interpretable models (Joshi and Mehta, 2017). 

2.4 Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) operates as a wrapper-style feature selection technique that incorporates 

a distinct machine learning algorithm at its core. Unlike filter-based methods that score individual features, RFE 

iteratively refines the feature set. It commences with all features from the training dataset and progressively 

prunes them until the desired count is achieved. This iterative procedure involves leveraging the designated 

machine learning algorithm to assess feature importance, discarding the least relevant features, and 

subsequently retraining the model. 

The RFE process continues iteratively, with features being removed step by step, until the specified target 

number of features remains in the selected subset. This interplay between the wrapper-style approach and the 

internal utilization of filter-based feature ranking enables RFE to effectively identify a subset of features that 

optimally contribute to the model's performance (Joshi and Mehta, 2017; Nahid and Kong, 2017). 

2.5 Segmentation 

The process of segmenting images into patches of varying dimensions, such as 2x2, 3x3, up to 10x10, is 

referred to as image segmentation. Within this segmentation process, the goal is to train the system to 

recognize contiguous regions of interest that hold significance for detecting abnormalities like breast cancer. By 
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eliminating extraneous information from the image, the identification of tumors at an early stage becomes more 

feasible. 

The K-means clustering algorithm plays a pivotal role in this segmentation endeavor. Operating by grouping 

similar objects together, K-means clustering aids in the creation of distinct clusters. In the context of image 

segmentation, it assists in aggregating pixels or patches that exhibit likeness. This approach yields promising 

outcomes, especially when comparable objects are present within a single cluster. Notably, the algorithm's 

efficiency shines through when dealing with data that is densely located as opposed to being scattered. 

Ultimately, this segmentation process, empowered by K-means clustering, facilitates the rapid identification 

of important regions within images, enhancing the accuracy of early tumor detection (Joshi and Mehta, 2017; 

Nahid and Kong, 2017). 

2.6 Support Vector Machine (SVM) 

The primary goal of the support vector machine (SVM) algorithm is to identify a hyperplane within an N-

dimensional space, where N represents the number of features, that effectively segregates data points into 

distinct classes. Given a set of data points with different classes, numerous potential hyperplanes can be 

considered to separate them. The key objective is to identify a hyperplane that exhibits the maximum margin, 

indicating the greatest distance between data points of the two classes. 

Hyperplanes function as decision boundaries that aid in classifying data points. By categorizing data points on 

either side of the hyperplane, distinct classes can be assigned. Furthermore, the dimensionality of the 

hyperplane corresponds to the number of features present. 

Support vectors denote data points positioned in close proximity to the hyperplane, significantly influencing 

its position and orientation. Leveraging these support vectors, the algorithm strives to maximize the margin of 

separation between the two classes. Notably, altering or removing support vectors would lead to a shift in the 

hyperplane's position. 

SVM stands out as a powerful classifier, particularly when there exists a well-defined separation margin and 

the data features are high-dimensional. However, its suitability diminishes when handling large datasets due to 

the extended training time required. Additionally, SVM's performance deteriorates in scenarios where the 

dataset is tainted with significant levels of noise (Joshi and Mehta, 2017). 

2.7 K-Nearest Neighbor (KNN) 

K-Nearest Neighbor (KNN) stands out as one of the elementary Machine Learning algorithms, grounded in the 

principles of Supervised Learning. The KNN algorithm operates on the premise of likening the new, incoming 

data to the pre-existing instances and then assigning the new data point to the category most akin to the 

established categories. In essence, KNN taps into the reservoir of stored data and uses similarity to guide its 

classification process. This method works particularly well when the data is structured and categorically 

organized. 

The operational logic of KNN revolves around identifying data points within the dataset that closely align with 

the new data point under consideration. The algorithm evaluates the distances between these points, sorting 

them based on proximity to the target point. The measurement of distance is typically conducted using various 

methodologies, with the Euclidean distance being a widely favored choice among experts. 

The subsequent step involves selecting a specific count of neighboring points whose distances are minimal in 

relation to other points. These chosen points, often referred to as "neighbours," play a pivotal role in the 

classification process. Notably, the selection of these neighbours is typically based on an odd number, which 

aligns with the number of classes present in the problem. For instance, in a binary classification task, the highest 

count of points from one class will be taken as the basis for classification. 
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KNN is admired for its simplicity in implementation and its ability to manage substantial datasets. However, it 

comes with a trade-off: the computational cost can be high due to the need to calculate distances across the 

entire training set. Additionally, the choice of the parameter 'K' – the number of neighbors to consider – can 

influence the algorithm's complexity and, subsequently, its performance (Joshi and Mehta, 2017). 

2.8 Random Forest 

Random Forest is a type of supervised learning algorithm that operates by amalgamating multiple Decision 

Trees. A Decision Tree is structured hierarchically, with nodes representing specific conditions based on a set of 

features. The branches within the tree steer the decision-making process towards the leaf nodes, which 

ultimately determine the class labels of the data instances. Decision Trees can be generated using either 

Recursive Partitioning or Conditional Inference Tree methods. 

Recursive Partitioning involves constructing a Decision Tree incrementally by deliberating whether to split 

each node further. This process entails partitioning the source dataset into subsets through attribute value tests. 

The recursion continues until a node's subset contains only instances with identical target variable values. 

In contrast, the Conditional Inference Tree approach is grounded in statistical principles. It employs non-

parametric tests as criteria for splitting nodes, with corrections for multiple testing to mitigate the risk of 

overfitting. 

Random Forest is particularly well-suited for modeling high-dimensional data due to its capacity to handle 

diverse data types such as missing values, continuous variables, as well as categorical and binary data. However, 

it's worth noting that when working with very large datasets, the memory usage can increase due to the size of 

the trees generated. One common challenge is the potential for overfitting, which emphasizes the need to fine-

tune the algorithm's hyper parameters to achieve optimal performance (Joshi and Mehta, 2017; Asri et al., 

2016). 

2.9 Logistic Regression 

In the realm of linear regression, the derived hyperplane is insufficient for predicting the dependent variable 

through the independent variables. This limitation becomes pronounced, especially when grappling with 

categorical data. This is where logistic regression steps in. Logistic regression shines when categorical data is in 

play, diverging from linear regression's approach of predicting continuous outcomes. Instead, logistic regression 

tackles the task of discerning the truth or falsehood of an assertion, effectively delving into classification 

problems. 

Unlike its linear counterpart, logistic regression leverages the sigmoid function to transform the independent 

variable into a probability expression bounded within the range of 0 to 1 concerning the dependent variable. 

This probabilistic nature equips logistic regression to not only offer probabilities but also to adeptly categorize 

new samples based on a combination of continuous and discrete measurements. This versatility renders logistic 

regression a sought-after algorithm in the realm of Machine Learning. 

However, it's worth noting that logistic regression does carry a limitation in the form of its assumption 

regarding the linearity between the dependent and independent variables. This assumption can pose challenges 

when dealing with datasets that don't conform to linear relationships, potentially affecting the algorithm's 

predictive accuracy (Joshi and Mehta, 2017). 

2.10 Decision Tree 

Decision Trees (DT) serve a dual purpose, finding utility in both classification and regression tasks. This 

versatile algorithm employs a tree structure characterized by two fundamental node types: the decision node 
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and the leaf node. The decision node embodies a test that guides the traversal of the tree, while the ultimate 

classification or prediction occurs within the leaf node. 

In essence, Decision Trees excel at capturing intricate decision-making processes in a highly interpretable 

format. This makes them valuable tools not only for classifying data points but also for predicting continuous 

outcomes through regression. By effectively compartmentalizing decisions into decision nodes and outcomes 

into leaf nodes, Decision Trees offer an intuitive approach to solving a wide array of predictive tasks (Vyas et al., 

2022). 

2.11 Ensemble Methods 

Ensemble learning stands as a potent Machine Learning technique where multiple distinct models are trained 

to collectively address a shared problem, ultimately yielding enhanced outcomes. The core principle underlying 

ensemble learning is the belief that by effectively amalgamating weak models, we can achieve heightened 

accuracy and robustness in our predictions. 

The underlying concept is grounded in the notion that the amalgamation of individual models can lead to a 

final model that not only outperforms the individual constituents but also demonstrates a greater capacity to 

withstand variations and uncertainties in the data. This collaborative approach capitalizes on the strengths of 

each individual model, creating a formidable ensemble that contributes to more accurate and reliable 

predictions (Vyas et al., 2022; Simon et al., 2021). 

2.12 Bagging 

During the process of model preparation, whether dealing with a classification or regression task, we 

construct a function that takes input data and produces an output result. This function is devised based on the 

characteristics of the training dataset. It's imperative to acknowledge that due to the inherent variability present 

within the training dataset (reflecting observed instances drawn from an underlying, unknown distribution), the 

resultant fitted model is also subject to this variability. If an entirely different dataset had been observed, the 

model generated would indeed diverge, showcasing a distinct configuration and behavior (Vyas et al., 2022). 

2.13 Naïve Bayes 

The Naïve Bayes classifier stands as a prominent supervised learning algorithm designed for classification 

tasks. Its foundation rests upon the Bayes theorem, a probabilistic formula that determines the probability of an 

event occurring given that another event has already taken place. As a versatile tool, Naïve Bayes finds extensive 

use across industries due to its simplicity and efficacy in various Machine Learning applications. 

Naïve Bayes operates on the assumption of feature independence, a premise that, while simplifying 

computations, often deviates from the intricate interdependencies present in real-world scenarios. This 

oversimplification can restrict the algorithm's practicality across complex use cases. 

An inherent challenge faced by this algorithm is the 'zero-frequency problem,' wherein it assigns zero 

probability to a categorical variable category that wasn't encountered during training. This limitation can be 

addressed by employing smoothing techniques that introduce minimal probabilities to unseen categories, 

enhancing the algorithm's robustness. 

Another noteworthy limitation of Naïve Bayes is its reliance on sizable datasets to achieve peak accuracy. The 

algorithm's performance tends to flourish with an ample volume of data, allowing it to draw more reliable 

conclusions and make accurate predictions. 

In summation, while Naïve Bayes offers a straightforward and potent approach to classification, its success 

hinges on acknowledging its assumptions and understanding its limitations. By addressing challenges such as the 
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'zero-frequency problem' and considering its applicability to specific data scenarios, practitioners can harness its 

capabilities effectively (Nahid and Kong, 2017). 

2.14 Boosting 

Boosting strategies operate with a similar underlying principle as ensemble techniques: they assemble an 

ensemble of models, aimed at collectively achieving the performance of a strong, superior learner. However, in 

contrast to the focus of ensembling on variance reduction, boosting adopts a distinct approach. It dynamically 

binds multiple weak learners together in an adaptive fashion, where each individual model in the ensemble 

receives more attention in areas where previous models were lacking efficacy. 

Each newly introduced model concentrates its efforts on challenging instances, progressively refining the 

overall ensemble's performance. This iterative process culminates in the creation of a robust learner with 

reduced bias, even though boosting can also incidentally contribute to variance reduction. 

Boosting is not only applicable to classification but also extends to regression tasks. While primarily geared 

towards mitigating bias, boosting favors base models that possess low variance and high bias. Adaboost and 

Gradient Boosting stand as two significant algorithms within the realm of boosting. These methodologies diverge 

in their approach to creating and combining the weak learners throughout the iterative process (Asri et al., 

2016). 

2.14.1 Adaptive / Adaboost Boosting 

Adaptive boosting (Adaboost) updates the weights attached to each training data point, whereas Gradient 

Boosting modifies the values of these points. This fundamental distinction arises from their respective 

approaches to addressing the optimization problem of approximating a composite model with weighted 

combinations of weak learners (Vyas et al., 2022; Asri et al., 2016; Derangula et al., 2021). 

2.14.2 Gradient Boosting 

Gradient boosting represents a state-of-the-art predictive approach that iteratively tackles a complex 

optimization challenge, yielding a model expressed as a linear combination of fundamental predictors—typically 

in the form of decision trees. This innovative methodology orchestrates the assembly of a predictive model and 

subsequently refines its generality by facilitating optimization for a wide range of differentiable loss functions. 

Employing a gradient descent algorithm, this technique systematically reduces the loss by introducing new 

decision trees. Notably, gradient boosting proves its efficacy in resolving predictive modeling intricacies across 

both regression and classification tasks. 

The foundation of Gradient Boosting (GB) lies in the notion that the most promising subsequent model, when 

integrated with existing models, serves to minimize overall predictive errors. This approach leverages the insight 

that integrating prior model outcomes into the construction of new models contributes to error reduction. For 

instance, the GB framework accommodates optimization across diverse loss functions and offers a spectrum of 

hyperparameter adjustments, endowing the fitting process with a high degree of adaptability and flexibility 

(Bazazeh and Shubair, 2016; Hassan et al., 2023). 

2.14.2.1 Extreme Gradient Boosting (XGBoost / XGB) 

XGBoost (XGB) stands as a gradient boosting framework rooted in ensemble machine learning strategies that 

leverage decision trees. This technique's swiftness in processing and capacity for scalability suggest its potential 

in yielding highly valuable insights. XGB finds utility across both regression and classification tasks. At its core, 

this methodology aims to achieve precise classification by progressively identifying weak algorithms. It employs 

the gradient descent technique to craft individualized decision trees, initially establishing sets of threshold 

values that undergo iterative refinement via the minimization of residuals during tree construction. Within the 
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context of gradient boosting, weak learners manifest as regression trees, with each tree mapping an input 

dataset to specific leaves bearing continuous markers. The process entails minimizing a regularized function 

(encompassing L1 and L2 norms), characterized by a convex loss function rooted in the disparity between 

predictions and target outputs. The training process incrementally introduces new trees to predict the residuals 

or errors of preceding trees. These predictions are then amalgamated with the outputs of prior trees to 

ultimately generate the final prediction (Bazazeh and Shubair, 2016; Hassan et al., 2023). 

2.14.2.2 Light Gradient Boosting (Light GBM) 

A novel approach in breast cancer detection has been introduced utilizing the Light Gradient Boost machine 

learning technique. This innovative method aims to transform initially weak learners into robust ones, thereby 

achieving enhanced accuracy in breast cancer detection.  

Unlike the conventional employment of weak learners as standalone classifiers, this technique leverages a 

boosting ensemble to achieve heightened classification accuracy. 

In this approach, the weak learners are harnessed as classifiers, which alone may not yield optimal 

classification accuracy. However, the concept of a strong learner emerges through the ensemble of these weak 

classifiers. This ensemble-based boosting technique is rooted in tree-based classification. Notably, the Light 

Gradient Boost machine learning technique molds the decision tree classifier into a unique weak learner 

structure, characterized by a vertical orientation. This innovative design, termed the "Leaf-wise Decision Tree 

Algorithm," showcases its distinctiveness in minimizing training loss compared to alternative algorithms. 

Through these advancements, the Light Gradient Boost technique demonstrates its potential to significantly 

improve breast cancer detection accuracy, thus offering promising avenues for enhanced medical diagnostics. 

3. Methodology 

The research methodology aims to discern the disparities between benign and malignant breast cancer cases. 

Initially, breast cancer data is gathered from a diagnostic dataset. The dataset is then preprocessed, and any 

missing values are handled by removal. Next, we utilize swarm plots to visualize and compare the features, 

assessing if there are distinct patterns between benign and malignant cases. Outliers in the features are 

identified and removed to ensure data integrity. 

Following the outlier removal, the preprocessed data is split into training and testing datasets. We proceed to 

train the data using various machine learning models such as Logistic Regression (Sultana and Jilani, 2018), 

Random Forest Algorithm, XG Boost Algorithm, and Light GBM Algorithm. The objective is to identify the model 

that yields the highest accuracy. Finally, based on the best-performing model, we construct a predictive system 

to effectively classify breast cancer cases as either benign or malignant. This methodology allows us to gain 

valuable insights into the characteristics that differentiate these types of cancer and create a robust predictive 

tool to aid in accurate diagnosis. 

3.1 Breast Cancer Dataset 

For this research, we utilized a diagnostic dataset containing 569 rows and 30 columns. These 30 parameters 

were chosen as the basis for our analysis. These attributes play a vital role in producing visualization patterns, 

making it easier to generate heat maps for feature visualization. 

3.2 Data Cleaning Procedure 

Once the dataset is imported using the Panda’s library, it becomes crucial to check for the presence of any 

missing values. The data cleaning process involves eliminating entire rows that contain any missing values. This 
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step ensures that subsequent tasks, such as visualization, can be carried out effectively with high accuracy. Heat 

maps are then employed to identify and remove outliers, further enhancing the accuracy of the analysis. 

4. Results and Discussion 

The results demonstrate that the Light GBM algorithm is the most suitable for classifying breast cancer as 

either benign or malignant, achieving an impressive accuracy score of 96.98%. To determine the best accuracy 

for the model, we used various machine learning models, including Logistic Regression, Gradient Boosting, 

Random Forest, XG Boost, and Light GBM Algorithm (Derangula et al., 2021). 

Figure 1 presents a count plot illustrating the distribution of benign and malignant cases in the dataset. 

 
Figure 1. Count chart for benign (1) and malignant (0) 

 

Swarm plot graphs were generated to visualize the relationship between the first 5 features (mean area, 

mean radius, mean texture, mean perimeter, and mean smoothness) out of the total 30 features, assessing their 

correlations (Figure 2). 

 

Figure 2. Swarm plot for 5 features of dataset 
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Similarly, swarm plot graphs visualize features 5 to 10, including mean fractal dimension, mean compactness, 

mean concavity, mean concave points, and mean symmetry, to explore their relationships (Figure 3).  

 

 

Figure 3. Swarm plot for 5 - 10 features of dataset 

Furthermore, swarm plot graphs visualize features 10 to 15, namely texture error, radius error, smoothness 

error, perimeter error, and area error, to assess their correlations (Figure 4).  

 

 

Figure 4. Swarm plot for 10 - 15 features of dataset 

Additionally, swarm plot graphs visualize features 15 to 20, such as symmetry error, compactness error, 

concavity error, fractal dimension error, and concave points error, to understand their relationships (Figure 5).  
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Figure 5. Swarm plot for 15 - 20 features of dataset 

 

Moreover, swarm plot graphs visualize features 20 to 25, including worst radius, worst texture, worst 

perimeter, worst area, and worst smoothness, to explore their correlations (Figure 6). 

 

 

Figure 6. Swarm plot 20 - 25 features of dataset 
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Lastly, swarm plot graphs visualize features 25 to 30, consisting of worst compactness, worst concavity, worst 

symmetry, worst fractal dimension, and worst concave points, to assess their relationships (Figure 7). 

 

 

Figure 7. Swarm plot for 25 - 30 features of dataset 

Figure 8 displays a heatmap showing all feature names and their correlations. 

 

Figure 8. Heat map for 30 features of dataset 
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Figure 9 illustrates a heatmap with redundant feature names removed and their correlations. 

 

 

Figure 9. Heat map for 16 features of dataset 

 

The features selected for training the data include mean fractal dimension, worst symmetry, mean texture, 

mean area, mean smoothness, mean concavity, worst fractal dimension, mean symmetry area error, 

smoothness error, concavity error, symmetry error, fractal dimension error, worst smoothness, worst concave 

points, and texture error.  These features are considered for training the algorithm and building the model to 

achieve the highest possible accuracy. 

5. Calculations 

Accuracy of an algorithm serves as a metric that gauges the proficiency in assigning cases to their appropriate 

categories. This metric quantifies the ratio of accurate predictions to the total instances present in the dataset. 

It's crucial to recognize that accuracy's performance is intricately tied to the threshold selected by the classifier, 

potentially leading to variations across different testing datasets. As a result, accuracy might not be the optimal 

yardstick for contrasting distinct classifiers, but it can offer a broad perspective on class prediction (Table 1).  

 

Table 1. Accuracy Matrix Calculation for Breast Cancer Prediction 

  True Class 

  Positive Negative 

Predicted Class 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

Thus, the calculation of accuracy can be expressed through the subsequent equation: 
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K TP K TN
Accuracy

K P K N
          (1) 

where: 

- K is a constant factor used for breast cancer accuracy measurement. It adjusts the significance of True 

Positives (TP), True Negatives (TN), Positives (P), and Negatives (N).  

- K(TP) represents Weighted True Positives - acknowledges the importance of correct cancer identifications. 

- K(TN) represents Weighted True Negatives - acknowledges the importance of correct non-cancer 

identifications. 

- K(P) = Weighted True Positives K(TP) + Weighted False Positives K(FP). 

- K(N) = Weighted True Negatives K(TN) +False Negatives K(FN). 

- K(FP) represents Weighted False Positives - False positives occur when the ML algorithm wrongly predicts 

a positive outcome. 

- K(FN) represents Weighted False Negatives - False negatives occur when the ML algorithm incorrectly 

predicts a negative outcome. 

Utilizing this formula (1), we have subjected four distinct algorithms to testing, Table 2. 

 

Table 2. Accuracy (in Percentage) of the four tested algorithms 

Algorithms Accuracy (in %) 

Light GBM 96.98% 

Logistic Regression 91.62% 

XG Boost 82.16% 

Random Forest 76.72% 

6. Conclusion 

The results of our study reveal that the Light GBM algorithm proves to be highly efficient and straightforward 

to implement when working with a diagnostic dataset. After removing the outliers, we found that 16 features 

remained, significantly contributing to the overall accuracy of the model. Among the algorithms tested, Light 

GBM achieved the highest accuracy of 96.98%. Logistic Regression yielded an accuracy of 91.62%, Random 

Forest Algorithm achieved 76.72% accuracy, and XG Boost Algorithm attained 82.16% accuracy. 

Additionally, we compared our findings with the study of the survival of breast cancer patients using a dataset 

containing 856 rows and 15 columns with machine learning models. The accuracy obtained in that study was 

84% (Lotfnezhad Afshar et al., 2021). 

Overall, our research demonstrates that the Light GBM algorithm excels in breast cancer classification on a 

diagnostic dataset, surpassing other algorithms and achieving higher accuracy. 

Hopefully, this will aid individuals in receiving early cancer treatment and proactively manage their lives. 
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