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Abstract

The conception of the bipolar complex fuzzy set (BCFS) is one of the fundamental and significant modifications of
the fuzzy set (FS) to tackle the tricky and awkward information. BCFS has a rich and wider structure and has been
utilized in various fields. In this article, we introduce the concept of bipolar complex fuzzy (BCF) subalgebras
(BCFSAs), BCF ideals (BCFls) of a BCK/BCl-algebra along with certain properties. Further, we investigate the
relations between BCFSA and a BCFl and a necessary condition for BCFSA to be a BCFl. We also investigate
characterizations of BCFI. Moreover, we introduce the notion of equivalence relations on the collection of all BCFls
of BCK/BCI algebra and the associated properties of equivalence relations.

Keywords: Bipolar complex fuzzy set; BCI/BCK algebra; bipolar complex fuzzy subalgebra/ideal.

1. Introduction

Every time the non-classical logic gets the benefits and rewards of the conventional logic when tackling the data
in numerous parts of vagueness and ambiguity. These days non-conventional logic plays a significant role in
computer science because it tackles the data containing fuzziness and vagueness. The conception of BCK/BCI-
algebras was investigated by Imai and Iseki (1965) and Iseki (1966) which is considered as the modification of
propositional logic. Several people studied the concept of BCK/BCl-algebras and employed it in the environment
of FS (Akram and Zhan, 2006; Meng, 2000). The structure of FS was explored by Zadeh in 1965 (Zadeh, 1965) in
which the membership grade (MG) of elements span the range of [0, 1]. The MG shows how much an element is
a part of the FS, if the MG is 1, then it implies that the element belongs entirely to the FS and if the MG is 0, then
itimplies that the element is not contained in the corresponding FS. Mordeson and Malik (1998) investigated fuzzy
commutative algebra, and Dubois and Prade (1979) propounded fuzzy real algebra. The (¢, ev q) and (a, ) fuzzy
subalgebras (FSA) in BCI/BCK-algebra was presented by Jun (2005; 2009). FSA of BE-algebras was investigated by
Rezaei and Saeid (2011). Akram et al. (2007) explored fuzzy models of K(G) algebras. The fuzzy ideals (FIs) of BCH-
algebra were given by Du and Liao (2007). Biswas (1990) investigated fuzzy subgroups and Liu (1982) presented
fuzzy invariant subgroups. In the FS, it’s hard to indicate the distinction between the contradictory and irrelevant
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elements and to express the country property of the element. Thus, Zhang (1994) presented the structure of
bipolar FS (BFS) in which the positive MG (PMG) of elements span the range of [0, 1] and negative MG (NMG) of
elements span the range of [—1, 0]. Akram et al. (2010) explored bipolar fuzzy (BF) K-algebras. Muhiuddin and Al-
Kadi (2021) investigated BF implicative ideals in BCK-algebras. Certain characteristics of doubt BF H-ideals in
BCI/BCK-algebra were propounded by Al-Masarwah (2018). Muhiuddin (2014) described BF KU-ideals and
subalgebras. Muhiuddin et al. (2020) presented novel sort of BF ideals (BFls) of BCK-algebras. Kawila et al. (2018)
explained BF UP-algebras. Lee and Jun (2011) investigated BF a-ideals of BCl-algebras. Jun et al. (2009) explored
BF models of certain sorts of ideals in hyper BCK-algebras. Mahmood and Munir (2013) introduced BF subgroups.

There are numerous modifications of the basic conception of FS and complex FS (CFS) is one of them, which
was derived by Ramot et al (2022). In CFS, the MG contains both amplitude and phase terms of the elements
belonging to [0, 1]. Afterward, Tamir et al. (2011) presented another form of CFS. Shagagha (2019) investigated
complex fuzzy (CF) lie algebras. Jun and Xin (2019 proposed the application of CFSs in BCK/BCI algebra. Rasuli
(2022) explored anti CF lie subalgebras. The other and most advanced modification of FS, BFS, and CFS, is BCFS,
investigated by Mahmood and Ur Rehman (2022a) in which the PMG of elements belongs to the first quadrant
and NMG of elements belongs to the third quadrant of the unit square. The structure of BCFS is a significant tool
for tackling tricky and complicated information and generalizing various prevailing concepts. Due to the wide
structure and importance of the BCFS, numerous scholars utilized it in various areas (Mahmood et al., 2021;
Rehman et al., 2022; Mahmood and Ur Rehman, 2022b). Yang et al. (2022) introduced the conception of BCF
subgroups.

Keeping in view the significance and supremacy of the BCFS, in this study we are going to apply the conception
of BCFS to the BCK/BCl-algebra. We investigate the conception of BCF subalgebras and BCF ideals of a BCI/BCK-
algebra along with associated properties. Moreover, we develop the relation among BCF subalgebra and BCF
ideals and a necessary condition for BCFA to be a BCFI. We also investigate characterizations of BCFI. Further, we
propound the conception of equivalence relations on the group of al BCF ideals of BCl/BCK-algebra along with
associated properties. The underneath article is managed as, In Section 2, we recalled some fundamental notions
related to BCK/BCl-algebra and the notion of BCFS. In Section 3, we investigated the concept of BCFSA and BCFI
and their related results. The concluding remarks are portrayed in Section 4.

2. Preliminaries

In this Section, we are going to recall some fundamental notions related to BCK/BCl-algebra and the notion of
BCFS. The conception of BCl/BCK-algebra is given by Iseki (1966) which has a significant part in the logical algebras
and is widely studied by numerous scholars.

Suppose that B(7) is the collection of all algebras of type T = (2, 0). BCl-algebra means the set (Q; *,0) € B(1)
which holds the underneath properties

Lo (((a *a2) * (a1 * @) * (a3 * 42) = 0) (¥ 41,02, 03 € Q)
2. ((az*(az*a2) *az) = 0) (Vqy,qz €9Q)
3. ((p*a)=0)(Va; €Q)

4 (@*a2=0q*qu=0=>aq =0q2) (01,92 €Q)

The BCl-algebra is known as BCK-algebra if it holds the underneath property
5. 0*xq;=0)(Vqu €9Q)

Every BCI/BCK algebra holds the underneath properties
L (*0=0)(Vaq €9Q)
1. (@ <qQ@=>q*q3<0*q3,q3 *d2 < A3 * Q1) (Vqy, A2, 03 € Q)
L ((a*a2) *az = (a1 * d3) * q2) (V Q1,02 03 € Q)
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V. ((a*a3)* (a2 *q3) < qq*az) (Va3,q2,03 € Q)
where, q; < q; iff q; * qz = 0. Any subset D of BCI/BCK-algebra @ is said to be a subalgebra of BCl/BCK-algebra
Qifgqy *qy EDV qy,qu € D. Asubset J is said to be ideal for BCl/BCK-algebra Q if it contains 0 and if q; * q, €
J and q; € J, then q; € 3. The ideal 3 of BCI/BCK-algebra @ holds the underneath axiom
QG <qzandq EI=>q; €3
An FS 0 in BCI/BCK-algebra Q is considered a fuzzy subalgebra of Q if V q;,q, € 9
0(as * a2) = min(0(qy), 0(qz2))
An FS 0 in BCI/BCK-algebra Q is considered a fuzzy ideal of Q if V q;,q, € Q
0(0) = 6(as)
0(a1) = min(0(q; * a2), 0(q2))
The novel structure of BCFS was investigated by Mahmood and Ur Rehman (2022a), given as follow.
The BCFS is of the underneath shape

Gocrs = {(q, (@gBCFS(q),@gBCFS(q))) laey) = ( o s (@ +¢®g3ch(q).> eo

QBCFS (@) +1 egBCFS (@)
where, @gBCFS(q) simplifies the positive membership grade and G)gBCFS(q) simplifies the negative membership

grade and @chps(q) G)QBCFS(q) € [0,1], gBCFS(q) G)gBCFS(q) € [—1,0]. For simplest in this study, we would
consider the BCFS as Gpcrs = (G)QBCFS’ GQBCFS) (GQBCFS T egBCFS’ ®§BCFS T egBCFS)

3. BCF subalgebras and BCF ideals

Here, we investigate the concept of BCFSA and BCFl and their related results. Q would be considered as BCK/BCI-
algebra in this study unless stated otherwise and 0 = (G)OBCFS, OBCFS) (G)OBCFS +1 G)OBCFS, G)OBCFS +1 G)OBCFS)
means 0 = (0 + ¢ 0, —0 — ¢ 0) in this article.

Definition 1: A BCFS Gpcrs = (06,0 00, ps) = (06 o +10¢ 08 +10g] ) inQ is considered as
BCF subalgebra (BCFSA) of Q if V¥ q4,q, € @, the underneath holds

1. 0, ..(a *qz) = min (G)EBCFS(ql), @gBCFS(qz)) which means that Ofr ps(Q1 * q2) =
min( GBCFs (a1), OQBCFS(qZ)) and GQBCFS(ql *qz) = min (GgBCFS (a1), egBCFS(qZ))
2. 0g,...(a *q) < max (G)gBCFS(ql),G)gBCFS(qz)) which means that Ocn (a1 * q2) <

max( 9BCFS (au), ggBCFS (CI2)) and G)QBCFS (ql Clz) < max (QQBCFS (), G)gBCFS (QZ))

Example 1: Suppose a BCK-algebra Q = {0, q,, a5, q3} with Cayley table (Table 1) interpreted as

Table 1. Cayley Table of example 1
Q1 Q2

*

0
Q
Q2

of £ o

0 0
0 0
o 0
s ds

B&E oo

q3

Now consider a BCFS Ggcrs in Q such as
_ 0,8 +10.5, 0,8 +:0.5, 0,5+1:0.2, 0,8 +:0.5,
Yscrs = {(0' (Zos— 0.4)> ' <‘h' (Zos—, 0.4)>’ (qz’ (Zos, 0.1)> ' (‘13' (Zos, 0.4)>}

Then Gpcrs is a BCFSA of Q.
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Example 2: Suppose a BCl-algebra @ = {0, q, q;, a2, q3} with Cayley table (Table 2) interpreted as

Table 2. Cayley Table of example 2

£& L oo

£ &S o olo
F S e oola
£ of & °
S o
STl

Now consider a BCFS Ggcrs in Q such as
0,9+ 0.6, 0,7 +¢0.55, 0,441:0.3,
<0' (Zo55- 0.5)> ’ <q' (Cos—, 0.45)> ' <Q1' (Zo2- 0.3)>’
GBcrs =
(0,4-+l0.3,) q3(0,4+10.3,)
©_02-:03/)\®\02-103
Then Gpcrs is @ BCFSA of Q.
Proposition 1: Suppose a BCFS Gpcrs = (OQBCFS’ G)QBCFS) (G)gBCFS 4+ @QBCFS, G)gBCFS 41 @QBCFs) if Gpcrs is

a BCFSA of Q, then Vq € Q G)QBCFS(O) > G)QBCFS(q) which means that G)QBCFS(O) > @QBCFS(q) G)QBCFS(O) >

gBCFS(q) and G)gBCFS 0) < G)QBCFS (Q) which means that G)gBCFS (0) < QQBCFS(q) G)QBCFS(O) = GgBCFS(CO'
Proof: Assume that q € @, then

G)gBCFS(O) = G)QB(:FS (C[ q) = G)913c1~"s 0) = gBCFS (C[* q) and QgBCFS(O) = @gBCFS(q-* CO
= G)gBCFS (0) = min (OQBCFS (@), OQBCFS Q)) = QBCFS (q) and

gBCFS(O) = min (egscps(q) G)QBCFS (Cl)) QQBCFS(q)
P P
= G)QBCFS 0) = G)gBCFS(Q)
and

OQBCFS(O) = G)QBCFS (qxaq) = GQBCFS 0) = OQBCFS (q.*q) and Ggscps 0) = egBCFS(Q* Q)

= G)gBCFS (0) < max (GgBCFS (@, egscps(q)) = gBCFS(Q) and

gBCFS(O) < max (GQBCFS(q) ®§BCFS q)) G)gBCFS(q)
= GgBCF‘S (0) = Glgvscps(q)'

Definition 2: Consider a BCFS Gpcrs = (06, 10 O0sps) = (060 +10f 08 +10{) ), then
1. The set B ((E)EBCFS, #, g)) {aeg: @QBCFS (@) = # and G)QBCFS (@) = g} would be positive (#,g) —cut of
Gacrs, Where £,g € [0,1].
2. The set N (@gBCFS, (a, e)) {q €Q: @QBCFS (@) <d and G)QBCFS (@ < e} would be negative (4, e) —cut of
Ggcrs, Where, d,e € [—1,0]
3. The  set PR (Goces, (B 9, (4,0))) =B (0L, 0 B)) 0 R(OF . (de)) would be
((#.9), (d,€)) —cut of Gcrs.
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. _ (@P N
Theorem 1: For a BCFSA gBCFS—(@QBcps'@QBcps) (G)Qscps+‘993cps'993cps+‘®93cps) of @, the
underneath holds

l. V£g€l[01]P (GEBCFS, %, g)) 0= (G)EBCFS, (f, g)) is a subalgebra of Q.
2. Yd,e€[-1,0]9 (G)gms, d, e)) =P=>N (G)IQVBCFS, (d, e)) is a subalgebra of Q.

Proof: As f,g€[0,1] and B(0F . (#.9)#0. If a,qeB(0f, . (Fa) OF ()=,
gBCFS(qJ-) = G)gBCFS(qZ) =, G)QBCFS (a2) = g- Thus
gBCFS (az * dz) = min (G)QBCFS(ql) OQBCFS(qZ)) > # and G)gBCFS(ql dz) = min (GQBCFS(QJ)’ G)Ig[;CFS(q‘Z)) =

g = arqz € B (08, (.9))

Hence B (G)gm,s, (f, g)) is a subalgebra of Q.
Now as d,e €[-1,0] and SR(G)IQVBCFS, (a, e)) 0. If q,q € m(elngCFS’(d’e))' OfN  (ay) <d,
Oy s (A1) < €, O8N (a2) < d, 0fy . (a2) < &. Thus
OFN (Qa * az) < max (OFY. (a,), 08 (q2)) <d and O (a; * ) < max (0 (q)), 0N , (az)) <
e>qu*qy EN (G)gBCFS, (d, e))

Hence M (@gBCFS, (a, e)) is a subalgebra of Q.

Definition 3: A BCFS Gpcps = (G)QBCFS, G)QBCFS) ((E)QBCFS +1 G)Qgcps' @QBCFS +1t G)Qgcps) in @ is considered as
BCF ideal (BCFIl) of Q if VV q4,q, € Q, the underneath holds

1. G)gBCFS(O) = G)gBCFS (q) which means that G)QB(:FS(O) = OgBCFS(q) and ®§BCFS(0) = G)QBCFS(q)
2. G)gBCFS(O) = G)QBCFS (@) which means that G)gBCFS(O) = @gBCFS(q) and QgBCFS(O) = G)gBCFS(q)

3. OQBCFS(QJ) > min ((E)QBCFS(qJL dz), Ggscps(QZ)) which means that @QBCFS(qJ) > min (@QBCFS(qJL *
Clz) GgBCFS (CI2)) and GgBCFS (qu) = min (Ggscps(ql *q2), G)gBCFS(qz))

4. 0g,,..(q) < max (@QBCFS(ql * qz),G)gBCFS(qz)) which means that OgF) (q;) < max (GggCFs(ql *
12,08}, (a2)) and Of (1) < max (Of] . (ay * 12), O (a2))

Example 3: Suppose a BCK-algebra Q = {0, q4, a2, q3, q4} With Cayley table (Table 3) interpreted as

Table 3. Cayley Table of example 3

* 0 U a2 L da
0 0 0 0 0 0
Q1 o 0 1 0 0
a2 a2 a2 0 0 0
a3 a3 a3 a3 0 0
Qs Qs a3 da W 0

Now consider a BCFS Ggcrs in Q such as
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<0 (0,67 +zo.5,)> (cu (0, 34 +LO.43,)> (qz (0,67 +¢0.5,)>
'N—0.7-106/)'\""\ —04—-,05/)'\"2\—07-106/)
Gpcrs =
(qg’ (0, 3441 0.43,)> ’ (q@ (0, 3441 0.43,)>
—04—10.5 —04—10.5
Then Gpcrs is a BCFI of Q.

ape . . _ P N .
Proposition 2: Consider a BCFl Ggcps = (G)QBCFS,G)QBCFS) (@QBCFS +1 OgBCFS,G)gBCFS +1 @QBCFS) of 9. If in
0, the inequality q; * q; < qz holds, then

L. gBCFS(qJ-) = min (egBCFS(qZ) G)QBCFS (Q3)) and G)QBCFS (q1) = min (OgBCFS(q-Z) QQBCFS(%))
2, G)QBCFS(q—l) = max (egBCFS(qZ) G)QBCFS (Q3)) and G)QBCFS (qu) < max (QQBCFS(qZ) OgBCFS(q-?’))

Proof:
1. Assume that q;,q,, q3 € Q such that q; * q; < q3, then (q; * q2) * q3 = 0. Thus,

gBCFs(ql) = min (®gBCFS (a1 * q2), QgBCFS(q-Z))

= min (min( gBCFs((ql *qz) * Q3) G)gBCFS(q‘?’)) gBCFS(qz))

= min (min( gBCFS(O) @gBCFS(q_g)) gBCFS(Cl2)>

= min( gBCFS(qZ) ®§BCFS(q3))

and
Ol o(a) = min (6 (a1 ), 6L, (@)
> min (mln( s (1 * A2) ¥ 03), 0%, (a2)), QBCFS(QZ))
— min (min( P s (00,0 (a3)), 08 . 012))

= min( QBCFS(qZ) G)Q‘BCFS(Q‘S))

2. Assume that q;, 3, q3 € Q such that q; * q, < qs3, then (q; * q3) * q3 = 0. Thus,
gBCFS(qJ-) < max (GgBCFS (a1 * q2), G)gBCFS(QZ))

< max (maX( QBCFS((ql *qz) * q3) Ggscps (Q3)) gBCFS(qz))

= max (max ( GBCFS (0) GQBCFS (qB)) QBCFS (Q2))

= maX( gBCFS(q‘Z) G)QBCFS(qB))

and

gBCFS(ql) < max (OQBCFS (a1 * q2), G)QBCFS(QZ))
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< max (ma ( gBCFS((q‘l * Q) * QB) G')Qj_r;c1~*s(q3)) gBCFS(qZ))

= max (max( GBCFs (0), G)QBCFS (Q3)) QBCFS (QZ))

= max( gBCFS (q2), G)91_f361~"s(q—3))
e . . _ P .
Proposition 3: Consider a BCFl Ggcps = (@QBCFS,GQBCFS) (@QBCFS +1 OgBCFS,G)gBCFS +1 @QBCFS) of 9. If in
0, the inequality q; < q3 holds, then

L gBCFS(qJ-) = G)QBCFS (q2) and egBCFS(qJ-) = G)QBCFS(qZ)
RN
2. G)QBCFS(QJ) = G)gBCFS (q2) and GQBCFs(ql) = G)QBCFS(qZ)

Proof:
1. Assume that q4,q3,q3 € @ such that q; < q,, then

gBCFs(ql) = min (egBCFS (a1 * q2), QgBCFS(q-Z))
= mm( QBCFS(O) OQBCFS(qz)) = gBCFS(qZ)
and

gBCFS(ql) = min (OQBCFS (a1 * q2), ®§BCFS(QZ))

= min (0% (0,0 (1)) = 0, (a)
2. Assume that q, 5, q3 € Q such that q; < q, then
O o(a) < max (OF (a1 * a), OFY . (a))
= max (08 (0), 08 (a2)) = OFY (2
and
O cps (@) < max (Of, (c1 * a2), O . (a))

= maX( GBCFs (0), G)gBCFS(ClZ)) gBCFS(qz)
Theorem 2: Consider a BCK-algebra @, in Q, each BCFIl of Q is a BCFSA of Q.

Proof: Assume that Gpcps = (0, .0 08, ps) = (Ofbeps + 100, ., O8N +10g% ) is a BCFI of BCK-
algebraof Q. Asq; *qy < q; VY q1,q, € Q, thus by proposition (3)
gBCFS(qJ- Qz) = G)glaczrs(q—l) G)gBCFS (qu*qz) 2 QgBCFS(q-l) and

gBCFS (qu * qZ) = G)QBCFS (qu), G)gBCFS (qu * QZ) = G)gBCFS(q-l)
and from Def (3), we have

G)gBCFS (a1 *q2) 2 G)QBCFS (qz) = min (G)gBCFS (a1 * q2), G)gBCFS(QZ))
= mm( GBCFs (Qu), G)QBCFS(QZ))
gBCFS (1 *qz) 2 G)QBCFS (q;) = min (GQBCFS (a1 * q2), G)QBCFS (qz))

2 mm( QBCFs(q-'l) GgBCFS(qZ))
and

gBCFS (q1 *q2) < GQBCFS (qu) < max (GQBCFS (a1 * q2), G)gBCFS (qz))
= max( QBCFs(q-'l) GgBCFS(qZ))
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gBCFS (1 *q2) < G)QBCFS (qu) < max (G)QBCFS (a1 * q2), G)QBCFS (qZ))

S maX( QBCFs(ql) G)QBCFS(qZ))
Therefore, Ggcrs is @ BCFSA of Q.
Remark 1: The converse of the above Theorem usually does not hold.
Example 4: Consider example 1 in which Ggcps = (G)Qscps' (E)gBCFS) ((E)QBCFS +1 G)QBCFS, G)gBCFS +1t G)QBCFS) is
a BCFSA of Q but Ggcrs is not a BCFI of Q because

QBCFS (q2) = 0.3 > —0.6 = max (OQBCFs(qz a1, G)QBCFS (ql))
The following result would show with what condition a BCFSA can be a BCFI in BCK-algebra.
Theorem 3: Suppose a BCFSA Gpers = (0f, 0 O0scns) = (060 4100 L OFN —+10f ) of BCK-

algebra Q such that Vqi,qq3 €9 @QBCFS(ql) > min (@QBCFS(qz) G)gBCFS(q3)) and G)gBCFS(ql) >
min( QBCFs(qZ) G)gBCFS(qB)) gBCFS(ql) < max (GQBCFs(qZ) QQBCFs(q—?)) and QBCFs(q—l) =

max( gBCFS(qZ) GQBCFS(qB)) holds and satisfies the inequality q; * q, < qs, then Ggcrs is a BCFl of Q.
Proof: From Proposition (1) we have that V q € 9

Ogpcrs (0) = 057 (@), 0, ., (0) = 05, . (q) and
Ogers (0) < 05 (@), g, ., (0) < 05y . (@)
Asq; *(q1 *q2) < q2 VY qy,q2 € 9, so by Proposition (2)
O pcrs (@) = min (OF7 (4 * 420,05, (02)), OF () = min (OFF (0 * @2), O (02)
and
Ofes Q) < max (O], (G * 42, OF),(A2)), O (@) < max (O, (@ * ), 0} (02))
This implies that GpcFs is a BCFl of Q.

Theorem 4: Consider a BCFS Ggcrs = (OQBCFS'OQBCFS) (G)gBCFS +t @QBCFS,G)gBCFS +1 @QBCFs) in @, then
Ggcrs is said to be BCFI of Q iff the underneath holds

L V§gel01]B(6L, .. (F9)*0=B(65, (g)isanideal of 0.
2. Vd,e€[-1,0] N (@gBm, , e)) £ 0% (@gBCFS, , e)) is an ideal of Q.

Proof: Let Gpers = (00, cpsr Oscrs) = (060 +10F L OFN —+10f )beaBCFlofQandf£,g € [0,1],
d.e€[-1,0] such that B(0L, .. (£9))=0 and R(Y . (de))=0. 0€ B(0F, . Fa)n
N (@’gVBCFS, (d, e)). Suppose that q;,q, € Q such that q; *xq, € B (GEBCFS, (%, g)) andq, €B (GEBCFS, #, g,))
and suppose that q3,q, € Q such that qz * q, € N (@gBCFS, (a, e)) andq, €N (@’QVBCFS, (a, e)), then

Ogpcrs (A1 * @2) = £, 057, (q2) = £, O, . (a1 * az2) = @, Og,,.(q2) = g and

gBCFS(q3 *Qq) < d, G)gBCFS (qs) = d, GQBCFs(q-? *qQq) < e, GIQIL\;’CFS () <e

By Def (3)
gBCFS(ql) = mm(@QBCFs Qi * qQ2), G)gBCFS (a2) ) > f,

gBCFS () = mm(GQBCFs (a1 * q2), G)gBCFS(qz)) =g
and
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Ofnces (43) < max(OG3 (a3 * Ax), O, (a0) ) < o,

0 50rs (@3) < max(Og, . (a5 * ), OF, () ) < e
>q €D (G)EBCFS, f, g)) and qz € ER(@QBCFS, (a, e)). Thus, ‘B((BgBCFS, 4, g)) and m(@gBm, (a, e)) are
ideals of Q.

Conversely, assume that conditions 1 and 2 are valid. Suppose that @QBCFS(ql) =f, G)gBCFS(qi) =g,
G)Qscps(ql) =d, and G)Qscps(ql) =¢, for any q; € Q, then q; € ‘IS((E)QBCFS, (#, g)) N m((i)gBCFS, (d,e)) =
B (GQBCFS’ %, g)) # @ and 9t (G)’QVBCFS, d, e)) *0.AsB (G)EBCFS, #, g)) and 9 (G)’QVBCFS, (d, e)) are ideals of Q,
0 € B(0F,0p5 (5.)) NR(OF, 0 (d€)).  Thus  OF () 2F=0F (@) ©Of,0)2g=

QBCFs(qi) GQBCFS(O) <d= G)QBCFS(ql) and OQBCFS(O) se= G)gBCFS(ql) Va; €9.1f3qp,qz a3 qs € Q such
that

QBCFS (q1) < min (G)gBCFS (a1 * az), G)QBCFS (qZ)) QBCFS (qz) < min (G)QBCFS(qJ- Q2 G)QBCFS (q;))
and

gBCFS (q3) > max (G)gBCFS (a3 * qs), @gBCFS (Q4)) gBCFS (q3) > max (Qgscps(q-” * Q) G)QBCFS(QD)
then by taking

o = ( QBCFs(ql) + min (G)gBCFS(q-l *Q2), @gBCFS(qé)))

Go =

N RN =

( gBCFS(ql) + min (egBCFS (Ch * Clz) QgBCFS(q-Z)))

and

do = ( GBCFsS (q3) + max (G)gBCFS (a3 * qa), QgBCFS(q:l‘)))

N| RN =

( GBCFs (qz) + max (G)QBCFS (a3 * qa), Glglzi(:Fs (q:*)))
We have

QBCFs(ql) < o < min gBCFS(ql a2, egBCFS ’))

QBCFs(ql) < go < mm( QBCFS(Cll 4z), G)gBCFS( az)
and

gBCFS(Cl3) > dy > max gBCFS(% a4, QQBCFS(C[:I-))
Ofy s (A3) > €9 > max (GgBCFS(% * qa), QQBCFS(C[:I-))
Thus, @i € B(0F, . (Fog0)) i+t €B(0F, . (Fogo) at€B(0f, . (Fogo) a€
R (GIgVBCFS: (do:eo)), Q3 *qy €N (Gi;VBCFS. (do,eo)), q; €N (@gBCPS, (do,eo)) which is a contradiction and
therefore, Ggcrs is BCFl of Q.

Corollary 1: For a BCFl Gpcrs = (06,000, ns) = (OFL . +10¢ 08 +100) ) of Q, the
intersection of a non-empty (#,¢) —cut and a non-empty (d, ) —cut of Ggcrs is an ideal of Q.

Remarks 2:

1. The union of a non-empty (#,¢) —cut and a non-empty (4, ) —cut of Gg-rs May not be an ideal of Q

Example 5: Suppose a BCl-algebra @ = {0, q, q,, q3} with Cayley table (Table 4) interpreted as
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Table 4. Cayley Table of example 5

ol ==

£ &L oo
& of @
£ of &
S

Suppose a BCFSin Q as

dacrs ={(0.( % ok ) (0 o 50 (s 82 (0 (ot 5}

Then,
0] if06<f#<1land04<g<1
p _ ) {0} if 0.5<#<06,and03<g <04
$@%wf%@D_ {0,qu} if04<#<05and0.2<g <03
Q9 if0<#<04,and0<g <0.2,
and

0] if —1<d<-08,and—1<e<-05
N ) {0} if —08<d<—-06,and —05<e<-04
L (OQBCFS‘ (d,e)) N i{O,qz} if —06<d<—-04,and —04<e<-0.1
Q if —04<d<0,and -0.1<e <0,

It is clear from Theorem (4) that Ggcrs is @ BCFl of Q. But B (@gBCFS, (0.5, 0.4)) Ut (GIQVBCFS, (—0.6, —0.4)) =
{0,q,3 U {0,902} = {0,q4,q,} and not a BCFl of Q because q3 * q; = q € {0,q4,q,} butqz € {0,q4,q2}-

2. If d =—# and e = —g, then also the union of a non-empty 8 (G)EBCFS, 4, g)) and a non-empty
N (@gBCFS, (—#, —g)) of Ggcrs is not an ideal of Q.

Example 6 Suppose a BCl-algebra Q@ = {0, 1, q , q5, q3} with Cayley table (Table 5) interpreted as

Table 5. Cayley Table of example 6

§SE »o|x
S rol|o
S oo
& of &
S of S
ST ol

Suppose a BCFS in Q as

(0 i) (1 et ) (s

Yacrs (QZ(Q2+1QL)><q3(Q2+lQL)>
204 -003/ )\ \_03-,02
Then,
) if09<$<1and06<g<1
(0} if 0.7 <$<09,and 0.4 < g < 0.6

B(0F, e F9) =1 {01} if 04<$<07,and 03 <g <04
{01,q,} if 0.2<#<04,and0.1<g<03
Q if0<#<02and0<g <0.1,
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and
[0} if —1<d<-06,and—-—1<e<-0.5

g%@v « D_ 0,1} if —06<d<—04,and —05<e<-0.3
YBcrs’ ~1{0,1,q,} if—04<d<-0.3,and—-03<e<-0.2
Q if —03<d<0,and -0.2<e <0,

It is clear from Theorem (4) that Ggcrs is @ BCFl of Q. But B (G)QBCFS, (0.4, 0.3)) U (G)’gVBCFS, (—0.4, —0.3)) =

{0,1,q,3 U {0,1,q,} = {0,1,q4, q,} and not a BCFl of Q because q3 *q; = q, € {0,1,q;,9,} but qs € {0,q;,92}.
Theorem 5: I Gpers = (00, cpr Oscrs) = (060 100 L OFN —+10f )isaBCFlofQ suchthatV q €

9,

QBCFS (@) + G)ggczvs (@ =0 and GQBCFS(q) + GQBCFS (=0 (1)
then, the union of a non-empty (#,¢) —cut and a non-empty (—#, —¢) —cut (i.e. d = —#,e = —g) of Gpcrs is

an ideal of Q.
Proof: Suppose #,¢ € [0,1] and as B (G)EBCFS, (#, g)) # @and N (G)gBCFS, (—#, —g)) # (@, are the ideal of 9
by employing Theorem (4). Thus, 0 € (Gchps' (#, g)) Nt (@gBCFS, (—#, —g)). Suppose that q;,q; € Q such

that Q1 * Q2 € §_B (G)EBCFS’ (#I g’)) uMn (G)IQVBCFSi (_ﬁl _g’)) and Q2 € §_B (GEBCFS' (#F g‘)) uMn (G)gBCFS' (_#1 _g))
From this, we get the four cases

i arar € B(0f,,, (h.9)) anday € B (65,0 (£,9))

i qy €B(0F,,, (F.9)nda, € R(0F, . (—F,-9))

i, qray € N(0Y . (—f—g))anda, € B(0F, .. (£.9))

iv. Qi *qz EN (G)IQVBCFS’ (—#, —g)) andq, € N (G)IQVBCFS, (—#, —g))

(i) implies that q; € P (G)gBCFS, (#, g)) cB (G)SBCFS, (#, g)) Ut (G)gBCFS, (—#, —g)), (iv) implies that q; €
N (@gBCFS, (—%, —g)) cP ((E)SBCFS, 4, g)) Uit (Oggms' (-#, —g)). For (ii), we have
Ofpers (U *a2) 2 4, 0g, . (a1 *q2) = gand OF)  (qz) < —#, Of, . (qz) < —
So from Def (3) and Eq. (1), we have
%mmvmd%mmqﬁ%mmnwm@WA%%>%mwm
Offcrs (@) = min (OFF (1 * 42,05 (42)) = min (OF , (ay * @2), ~0f} ., (02))
> € B(0F, .5 £.9)) € B (08, $.9)) UR (L, .. (—.—))

now (iii) implies that
gBCFS(qJ *d2) < —4, OQBCFs(ql *q2) < —g-and G)QBCFs(qz) > f, G)QBCFs(qz) =37

v

f
g

v

So from Def (3) and Eq. (1), we have
OFF o (@) = min (OFF (ay * @2), 0FF .. (@) = min (~6F) (a * 1), OFF . (a2)) = #
Off s (@) = min (OfF ., (a * 42), O (a)) = min (=6f] . (o * 1), O (02)) = 9
= @1 € B(0F0r5 5:9)) S B (08, (8.9)) UR (0 (F.-9)).  Thus,  B(6F,,5, (h9)) U

N (@QBCFS, (—#, —g)) is an ideal of Q.
Suppose that BCFI(Q) is the group of all BCFIs of Q, #,¢ € [0,1] and &4, e € [—1, 0], then we introduce binary
relations RP## and RN%€ on BCFI(Q) as
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(Goers—-1,Gcrs—2) € RPH = P (®§BCFS_1, %, g»)) =P (GEBCFS_ZJ (%, g»))
(Gocrs—1,Gpers—2) € RN & N (@IgVBCFS o (a, 3)) = (G)gBCFS o (d, 6))
respectively, V Gpcrs-1 = (G)QBCFS 1’®gBCFS 1) (OQBCFS . T GgBCFS 1 G)QBCFS , T G)QB(:FS 1) and Gpcrs—2 =
) d,
(GgBCFS 2’ G)gBCFS z) (@QBCFS , T OQBCFS 2’ G)QBCFS , T GgBCFS 2) € BCFI(Q). Obviously, RPFY and RN
are equivalence relations on BCFI(Q). For Ggcrs—1 = (@QBCFS iy G)QBCFS 1) (GgBCFS Lt G)gBCFS 1’®gBCFS Lt
L G)Qscps 1) € BCFI(Q), suppose that [gBCFS_l]mPﬁ,g( Gaers—1] SRNd,e) is an equivalence class of Ggcrs_1 modular
g}gp#g(gmvd.e)_ Further, we would signify the collection of all equivalence classes modular iRPf'g(iRNd'e) by
BCFI(Q)/%®P*#(BCFI(Q)/RN**) i.e.
BCFI(Q)/RP** = {[Gpcrs—1lypra | Gacrs—1 € BCFI(Q)}
BCFI(Q)/RN*¢ = {[Gpcrs—1lqnee | Grers—1 € BCFI(Q)}
Next, Suppose that the collection of all ideals of Q is signified by Ideal(Q), define maps

I(p.g: BCFI(Q) — Ideal(Q) U {8} by Ty g (Gocrs) = B (0L, s (B.9))

and
[ae): BCFI(Q) — Ideal(Q) U {8} by Tty ey (Gocrs) = R (0%, . (d.€))

VY Gpcrs = (G)gBCFS' G)gBCFS) (egBCFS Tt G)gBCFS’ G)gBCFS T QgBCFS) € BCF1(Q). Cleary [g.9) and Iy are
well defined.
Theorem 6: Let #,¢ € (0,1] and &, e € [—1, 0), then maps (44 @and 4 ) are surjective.

Proof: Clearya BCFS 0 = (G)OBCFS, OBCFS) ((E)OBCFS +1 G)OBCFS’ +1 GOBCFS) isa BCFl of @, whereV q €
OBCFS(q) G)OBCFS(q) G)OBCFS(q) GOBCFS(q) = 0 Then

5.9 (0) = B (08,005 ($.9)) = 0

GOBCFS

and

M) =R (6, .. (de)) =
now for any non-empty H € Ideal(Q), suppose a BCFS G(H)pcrs = (eg(ﬂ)scm’eg(ﬂ-f)scps) — (@)Ig?é’}[)BCFS +
LOG(s00mcrs O50)pcrs T OG0 pcrs) In Qs and

. 1+:1 i EH
Gg(ﬂ)ams: Q - [0,1] + ¢ [0, 1] defined as Og(H)BCFS = { fa

04+:0 otherwise
and

N _ i N _(—1—11 ifqeXH
O30 pcrst @ = [=1,0] + ¢ [~1,0] defined as 0]y, = { Ty 'y U A=V

Then clearly G(H) is a BCFl of Q. Next, we have
F(#_g)(g(f]{)) =P (Gg(:}{)BCFS (%, g“)) {CL €Q| G)g(g'[)BCFS(Q) 2f& G)g(g'[)BCFS(Q) = g’}
- {q €Q| G)9(7{)Bc1vs(q) 1& Gg(ﬂ)BCFs = 1} =H
and
Tty (G0 = R (05501 (4€)) = {0 € Q1 B8y, (@) < & & Oy, () < €}

{CL €Q| Gg?g{)BCFS(CO —1& Gg(}[)BCFS(q) - _1} =¥
Thus, T4 4) and [, are onto (surjective).
Theorem 7: For every #,¢ € (0,1] and d, e € [—1,0), the quotient sets BCFI(Q) /RP?# and BCFI(Q)/RN**
are equipotent to Ideal(Q) n {@}.
Proof: Define two maps
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[(5.g): BCFI(Q)/RP¥ — Ideal(Q) U {0} as (g ) ([Gcrslupts) = Tigg) (Gacrs)
and
F('d,e)i BCFI(Q)/RN® - Ideal(Q) U {0} as F(,d,e)([gBCFS]mNdre) = I(4,¢)(Grcrs)
For #,¢ € (0,1] and d,e € [-1,0) and V Ggcrs € BCFI(Q). Now each Gpcps—1 = (e)gws 200 )=
(G)gBCFS 1 +L®§BCFS 1’ eggct"s a G)QBCFS 1) and Gscrs—2 = (QQBCFS 2’ gBCFS 2) (GQBCFS , T
L G)QBCFS 2’ G)QBCFS , Tt G)QBCFS 2) € BCFI(Q), if P (QgBCFS—f (#, g’)) = (QQBCFS—Z’ #, g“)) and

N (GQBCFS—I' (d,e)) = (G)gBCFS_Z; d, 3)), then (Goers—1, Grers—2) € RPP? and (Gpcrs—1,Grers—2) € RN,

thus [Gpcrs—1lypse = [Gacrs—2lupte and [Gpcrs—1lante = [Gocrs—2lgyee- Consequently, I, ) and I, .y are

one-one (injective). For non-empty H € Ideal(Q), suppose a BCFS G(H)gcps = ((E)g(g_[)BCFS, G)Igv(ﬂ)BCFS) =
P RN IN : :
(Og(ﬂ)scps + 1060 pers OG0 pers T @Q(H)Bcps) in @ presented in Theorem (6), then

F(,f,g,)([g(}[)BCFS]gzpf&) = T30 (G(FH)pcrs) = P (@g(}[)Bcps’ (#, g)) =
and

F(Id e)( g(}[)BCFS]mNde) = F(d e)(g(}[)BCFS) = (@Igv(yf)BCFs, (d, 6’)) =
Next, For BCFI 0 = (G)OBCFS' OBCFS) (GOBCFS ti G)OBCFS' GOBCFS ti GOBCFS) we have

[(4.0)([05crslypis) = Tig.g)(Ocrs) = ( e @))
and

F(,d,e)([OBCFS]iRNd'e) = F(d,e)(OBCFS) = ( 0BcFs’ d, 6))
Hence, F('ﬁ_g) and F('d,e) are surjective (onto) and the required proof is completed.

4. Conclusion

We developed this study by keeping in view the importance and significance of the BCFS theory as BCFS theory
is one of the richest and most modified theories in the prevailing literature. This article contained the conception
of BCFSAs and BCFls of BCK/BCl-algebras with various properties. Also, this article contained the relations between
BCFSA and a BCFI and a significant condition for BCFSA to be a BCFI. Furthermore, we proposed characterizations
of BCFI in this study. At last, this study contained the conception of equivalence relations on the group of all BCFls
of BCK/BCl-algebra and the linked properties.

In the future, we would like to employ the investigated work to some of the prevailing works like BCF soft sets
(Mahmood et al, 2022), bipolar complex intuitionistic FSs (Al-Husban, 2022; Jan, 2022).
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